
Appendix FF

Transition Probabilities for
z-Polarized Light

We suppose that the electromagnetic radiation incident upon an atom is a superposition of plane waves. For each of these
waves, the electric field can be written

E = 2E0 sin(k · r − ωt). (FF.1)

The energy per unit volume of the radiation field associated with this monochromatic wave is

W = ε0E2 = ε0 4E2
0 sin2(k · r − ωt).

Since the time average of the sine squared function in this last equation is 1/2, the average energy per volume is

Wav = 2ε0E
2
0. (FF.2)

Using the representation of the sine function given by Eq. (3.10), Eq. (FF.1) can be written

E = −iE0ei(k·r−ωt) + iE0e−i(k·r−ωt). (FF.3)

For most applications, the coupling between the electrons and the radiation field is rather weak. The interaction can then be
described by the Hamiltonian

Hint = E · (−er), (FF.4)

where (−er) is the dipole moment of the electron.We shall consider radiation for which the electric field vectorE is directed
along the z-axis. Using Eq. (FF.3), the interaction Hamiltonian can then be written

Hint = −i(−ez)E0 ei(k·r−ωt) + i(−ez)E0 e−i(k·r−ωt). (FF.5)

The wave function of a hydrogen-like ion exposed to a time-dependent radiation field may be described by Eq. (4.17)

ψ(r, t) =
∑

n

cn(t)φn(r)e−iEnt/�, (FF.6)

where the coefficients cn(t) depend on time. The wave functions φn are eigenfunctions of the stationary atomic Hamiltonian

H0 = −�
2

2m
∇2 − 1

4πε0

Ze2

r
. (FF.7)

For simplicity, we assume that the eigenvalues En are nondegenerate. In order to be in a position to calculate the probability
that the atom makes a transition from a level i to a level j, we suppose that at time, t = 0, the coefficient ci(0) is equal to
one and all the other coefficients cj(0) are equal to zero. We wish to calculate the probability |cj(t)|2 that at a later time t the
atom is in the state j. Substituting Eq. (FF.6) into the Schrödinger time-dependent equation,

i�
∂ψ(r, t)
∂t

= H ψ(r, t), (FF.8)
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we obtain the following first-order differential equation for the coefficients cn(t)

∑

n

(
i�
dcn
dt

+ Encn

)
φn(r) e−iEnt/� = (H0 +Hint)

∑

n

cnφn(r) e−iEnt/�. (FF.9)

On the right-hand side of this equation, we have written the Hamiltonian H as the sum of a stationary term H0 and a
dynamic term Hint corresponding to the interaction of the electron with an oscillating electromagnetic field. Since φn is an
eigenfunction of H0 corresponding to the eigenvalue En, the second term on the left-hand side of the equation cancels with
the first term on the right to give

∑

n

i�
dcn
dt
φn(r) e−iEnt/� = Hint

∑

n

cnφn(r) e−iEnt/�. (FF.10)

The assumption that Hint is small means that the coefficients cn(t) evolve slowly with time. It is thus reasonable to
approximate the coefficients cn on the right-hand side of the above equation with their initial values. Since ci(0) = 1 and
all the other coefficients are zero, we get

∑

n

i�
dcn
dt
φn(r) e−iEnt/� = Hintφi(r) e

−iEit/�. (FF.11)

We may now single out the term on the left-hand side corresponding to the level j by multiplying the equation through on
the left by the function φ∗

j (r) and integrating to obtain

∑

n

i�
dcn
dt

e−iEnt/�
∫
φ∗
j (r)φn(r) dV = e−iEit/�

∫
φ∗
j (r)Hintφi(r) dV. (FF.12)

The eigenfunctions of H0 have the property that they form an orthogonal set of functions. This means that if n is not equal
to j, the integral,

∫
φ∗
j (r)φn(r)dV, which appears on the left is equal to zero. For the case, n = j, the functions can be

normalized so that the integral is equal to one. Using this property of the wave functions, Eq. (FF.12) can be written

i�
dcj
dt

= ei(Ejt−Ei)t/�
∫
φ∗
j (r)Hintφi(r) dV. (FF.13)

The factor, (Ej − Ei)/�, which appears in the exponential term may be identified as the angular frequency of the transition

ωij = Ej − Ei
�

. (FF.14)

Multiplying Eq. (FF.13) through by −idt/� and integrating from 0 to t, we obtain the following equation for the coefficient
cj as a function of time

cj(t) = − i

�

∫ t

0
eiωijt

′
[∫

φ∗
j (r)Hintφi(r) dV

]
dt′. (FF.15)

In order to solve this last equation for cj, we must use the explicit form of the interaction Hamiltonian. Substituting Eq.
(FF.5) into Eq. (FF.15) and performing the integrations over t′, we obtain

cj(t) = −
[
1 − ei(ωij−ω)t

�(ωij − ω)

]
iE0

∫
φ∗
j (r)(−ez) eik·rφi(r) dV

+
[
1 − ei(ωij+ω)t

�(ωij + ω)

]
iE0

∫
φ∗
j (r)(−ez) e−ik·rφi(r) dV. (FF.16)

For the caseEj < Ei, the angular frequencyωij, which is given by (FF.14), is negative and the transition i → j corresponds
to stimulated emission. When the frequency ω of the incident radiation is near −ωij, the denominator of the second term in
Eq. (FF.16) will become very small and the second term will be much larger than the first. It is usually true that for emission
processes the first term may be neglected. Similarly, the first term in Eq. (FF.16) provides a good approximate description
of absorption.
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We shall consider stimulated emission in some detail. Factoring ei(ωij+ω)t/2 from the second term of Eq. (FF.16), we may
write this contribution to cj as

cj(t) = ei(ωij+ω)t/2
[
ei(ωij+ω)t/2 − e−i(ωij+ω)t/2

�(ωij + ω)

]

×iE0

∫
φ∗
j (r)(−ez) e−ik·rφi(r) dV. (FF.17)

The representation of the sine function in terms of exponentials given by Eq. (3.10) may then be used to write Eq. (FF.17)
in the following way

cj(t) = ei(ωij+ω)t/2
sin[(ωij + ω)t/2]

�[(ωij + ω)/2]
E0

∫
φ∗
j (r)(−ez) e−ik·rφi(r) dV. (FF.18)

The transition probability per time is |cj(t)|2/t. Using Eq. (FF.18), the transition probability per time may be written

|cj(t)|2/t = t sin2[(ωij + ω)t/2]

�2[(ωij + ω)t/2]2
E2
0 |

∫
φ∗
j (r)(−ez) e−ik·rφi(r) dV|2. (FF.19)

Eq. (FF.19) gives the probability per time that radiation of a single frequency ω will be emitted. According to Eq. (FF.2),
the energy per volume of the wave is equal to 2ε0E2

0. In order to be in a position to integrate over the entire spectrum of
frequencies, we set this expression for the energy equal to the amount of energy of a continuous spectrum in the range
between ω and ω+ dω

2ε0E2
0 = ρ(ω) dω. (FF.20)

where, as before, ρ(ω) is the energy density per frequency range. Solving the above equation for E2
0, gives

E2
0 = 1

2ε0
ρ(ω) dω. (FF.21)

We now substitute this expression for E2
0 into Eq. (FF.19) and integrate over a range of frequencies that includes the resonant

frequency −ωij to obtain

|cj(t)|2/t = 1

2ε0�2
|
∫
φ∗
j (r)(−ez) e−ik·rφi(r) dV|2

×
∫ ω2

ω1

ρ(ω)

[
sin

(
(ωij + ω)t/2)

)
(
(ωij + ω)t/2

)
]2

t dω. (FF.22)

The term occurring in the denominator of the integrand will be zero when the frequency ω is equal to −ωij. This frequency,
which makes the largest contribution to the transition probability, will be denoted by ω∗. Using Eq. (FF.14), we may write

ω∗ = −ωij = Ei − Ej
�

. (FF.23)

For an emission process, Ei will be greater than Ej and ω∗ will be positive. According to Eq. (4.44), ω∗ is then equal to the
transition frequency. Substituting ω∗ for −ωij in Eq. (FF.22), we get

|cj(t)|2/t = 1

2ε0�2
|
∫
φ∗
j (r)(−ez) e−ik·rφi(r) dV|2

×
∫ ω2

ω1

ρ(ω)

[
sin ((ω − ω∗)t/2))
((ω − ω∗)t/2)

]2
t dω. (FF.24)

The function within square brackets in this last equation is similar to the function occurring within square brackets in
Eq. (3.44), which is represented by the dotted line in Fig. 3.13. Both functions have well-defined maxima. The function
within square brackets in Eq. (FF.24) has its maximum value for ω = ω∗, and the function is zero when the frequency ω
differs from ω∗ by an integral number of multiples of 2π/t

ω − ω∗ = n
2π

t
. (FF.25)



e30 Appendix| FF Transition Probabilities for z-Polarized Light

For large values of t, the function within square brackets becomes very sharply peaked. The function ρ(ω) can then be
approximated by its value at the transition frequency ω = ω∗ and brought outside the integral to give

|cj(t)|2/t = 1

2ε0�2
ρ(ω∗)|

∫
φ∗
j (r)(−ez) e−ik·rφi(r) dV|2

×
∫ ω2

ω1

[
sin ((ω − ω∗)t/2)
((ω − ω∗)t/2)

]2
t dω. (FF.26)

In the limit of large t, the integral has the value 2π , and we obtain

|cj(t)|2/t = π

ε0�2
ρ(ω∗)|

∫
φ∗
j (r)(−ez) e−ik·rφi(r) dV|2. (FF.27)

In deriving this result, we have not made any assumptions concerning the wavelength of the light. A very useful
approximation can be obtained by taking advantage of the fact that the size of the atom is much smaller than the wavelength
of visible or even ultraviolet light. The wavelength of visible light is between 400 and 700 nm, while the wavelength
of ultraviolet light is between 10 and 400 nm. By comparison, the size of an atom is about 0.1 nm. The dependence of
the incident wave upon the spatial coordinates occurs through the factor e−ik·r in Eq. (FF.27). Since the magnitude of
the wave vector k is 2π/λ, k · r will not change appreciably over the size of the atom. It follows that we can approximate
the exponential function by the first term in its Taylor series expansion

e−ik·r = 1 − ik · r + · · · , (FF.28)

This is called the electric dipole approximation. Replacing the exponential function with 1 in Eq. (FF.27) and denoting the
transition frequency by ω as in the text, we obtain

|cj(t)|2/t = π

ε0�2
ρ(ω)|

∫
φ∗
j (r)(−ez) φi(r) dV|2. (FF.29)


